Trans-Planckian censorship conjecture from the swampland distance conjecture

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Falconer’s Distance Set Conjecture

In this paper, using a recent parabolic restriction estimate of Tao, we obtain improved partial results in the direction of Falconer’s distance set conjecture in dimensions d ≥ 3.

متن کامل

The AdS/CFT Correspondence Conjecture and Topological Censorship

In [1] it was shown that (n+1)-dimensional asymptotically anti-de-Sitter spacetimes obeying natural causality conditions exhibit topological censorship. We use this fact in this paper to derive in arbitrary dimension relations between the topology of the timelike boundary-at-infinity, I, and that of the spacetime interior to this boundary. We prove as a simple corollary of topological censorshi...

متن کامل

On Falconer’s Distance Set Conjecture

In this paper, using a recent parabolic restriction estimate of Tao, we obtain improved partial results in the direction of Falconer’s distance set conjecture in dimensions d ≥ 3.

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

$L^p$-Conjecture on Hypergroups

In this paper, we study $L^p$-conjecture on locally compact hypergroups and by some technical proofs we give some sufficient and necessary conditions  for a weighted Lebesgue space  $L^p(K,w)$ to be a convolution Banach algebra, where $1<p<infty$, $K$ is a locally compact hypergroup and $w$ is a weight function on $K$.  Among the other things, we also show that if $K$ is a locally compact hyper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2020

ISSN: 2470-0010,2470-0029

DOI: 10.1103/physrevd.101.046013